Sederhanakan Ekspresi Logika
Dibawah Ini Dengan Aljabar Boolean
1.
|
AB’ + BC + C’A
|
= AB’ + BC + AC’
= A(B’ + C’) + BC
= A.1
= A
|
(T1 b)
(T3a)
(T2 b)
|
2.
|
A’ (BC + AB + BA’)
|
= A’.(B (C +A + A’))
= A’.(B(C+1))
= A’.(B.1)
= A’.B
|
(T1 a)
(T8b)
(T7C)
(T7 b)
|
3.
|
ABC + AB + A
|
= ABC + AB + A.1
= A.(BC + B + 1)
= A.(B.(C+1)+1)
= A.(B.1+1)
= A.(B +1)
= A.(1)
=A
|
(T7 b)
(T3a)
(T7 b)
(T7 C)
(T7b)
(T7C)
(T7b)
|
4.
|
(A’ + AB).(A’B)
|
=A’.(A’B) +B(AA’)
=A’.(A’B) +B(0)
=A’.(A’B) +0
=A’.(A’B)
= A’B
|
(T3a)
(T8b)
(T7d)
|
5.
|
BC + AC + ABCD + ADC + A’
|
= BC.(1+AD) + AC.(1+D)+A’
= BC.(1) + AC.(1) + A’
= BC + AC + A’
|
(T7b) (T3a)
(T7C)
(T7b)
|
BUATLAH TEBEL KEBENARAN DARI
PERSAMAAN LOGIKA DIBAWAH:
a.
X.Y + X’.Y + X’.Y’ = X’Y
X
|
Y
|
X’
|
Y’
|
X.Y
|
X’.Y
|
X’.Y’
|
X.Y + X’Y
|
(X.Y + X’Y) + X’.Y’
|
X’+Y
|
1
|
1
|
0
|
0
|
1
|
0
|
0
|
1
|
1
|
1
|
1
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
1
|
0
|
1
|
1
|
1
|
0
|
0
|
1
|
1
|
0
|
0
|
1
|
0
|
1
|
1
|
b.
A.B.C + A.C + B.C = (A+B).C
A
|
B
|
C
|
A+B
|
A.B
|
A.C
|
B.C
|
(A.B).C
|
(A.B.C)+(A.C)
|
(A.B.C)+(A.C)+(B.C)
|
(A+B).C
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
1
|
1
|
0
|
1
|
0
|
0
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
0
|
0
|
1
|
0
|
0
|
1
|
1
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
c.
(X’.Y + Y’.X) + X.Y = (X+Y)
X
|
Y
|
X’
|
Y’
|
X.Y
|
X’.Y
|
X.Y’
|
(X’.Y)+(
X.Y’)
|
(X’.Y+X.Y’)+
(X.Y)
|
X+Y
|
1
|
1
|
0
|
0
|
1
|
0
|
0
|
0
|
1
|
1
|
1
|
0
|
0
|
1
|
0
|
0
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
0
|
0
|
1
|
0
|
1
|
1
|
1
|
0
|
0
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
No comments:
Post a Comment