Twitter Delicious Facebook Digg Stumbleupon Favorites More

Monday, November 19, 2012

Sederhanakan Ekspresi Logika Dibawah Ini Dengan Aljabar Boolean
1.     
AB’ + BC + C’A
= AB’ + BC + AC’
= A(B’ + C’) + BC
= A.1
= A
(T1 b)
(T3a)

(T2 b)
2.     
A’ (BC + AB + BA’)
= A’.(B (C +A + A’))
= A’.(B(C+1))
= A’.(B.1)
= A’.B
(T1 a)
(T8b)
(T7C)
(T7 b)

3.     
ABC + AB + A
= ABC + AB + A.1
= A.(BC + B + 1)
= A.(B.(C+1)+1)
= A.(B.1+1)
= A.(B +1)
= A.(1)
=A
(T7 b)
(T3a)
(T7 b)
(T7 C)
(T7b)
(T7C)
(T7b)
4.     
(A’ + AB).(A’B)
=A’.(A’B) +B(AA’)
=A’.(A’B) +B(0)
=A’.(A’B) +0
=A’.(A’B)
= A’B
(T3a)
(T8b)
(T7d)

5.     
BC + AC + ABCD + ADC + A’
= BC.(1+AD) + AC.(1+D)+A’
= BC.(1) + AC.(1) + A’
= BC + AC + A’
(T7b) (T3a)
 (T7C)
(T7b)



BUATLAH TEBEL KEBENARAN DARI PERSAMAAN LOGIKA DIBAWAH:
a.         X.Y + X’.Y + X’.Y’ = X’Y
X
Y
X’
Y’
X.Y
X’.Y
X’.Y’
X.Y + X’Y
(X.Y + X’Y) + X’.Y’
X’+Y
1
1
0
0
1
0
0
1
1
1
1
0
0
1
0
0
0
0
0
0
0
1
1
0
0
1
0
1
1
1
0
0
1
1
0
0
1
0
1
1

b.        A.B.C + A.C + B.C = (A+B).C
A
B
C
A+B
A.B
A.C
B.C
(A.B).C
(A.B.C)+(A.C)
(A.B.C)+(A.C)+(B.C)
(A+B).C
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
0
0
0
0
0
0
1
0
1
1
0
1
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
0
0
1
1
0
1
0
1
0
0
0
0
0
0
0

c.         (X’.Y + Y’.X) + X.Y = (X+Y)
X
Y
X’
Y’
X.Y
X’.Y
X.Y’
(X’.Y)+( X.Y’)
(X’.Y+X.Y’)+ (X.Y)
X+Y
1
1
0
0
1
0
0
0
1
1
1
0
0
1
0
0
1
1
1
1
0
1
1
0
0
1
0
1
1
1
0
0
1
1
0
0
0
0
0
0

No comments:

Post a Comment

 
Design by Free WordPress Themes | Bloggerized by Lasantha - Premium Blogger Themes | Blogger Templates